Improving weighted information criterion by using optimization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Chernoff criterion for classification by using the filled function

Linear discriminant analysis is a well-known matrix-based dimensionality reduction method. It is a supervised feature extraction method used in two-class classification problems. However, it is incapable of dealing with data in which classes have unequal covariance matrices. Taking this issue, the Chernoff distance is an appropriate criterion to measure distances between distributions. In the p...

متن کامل

Improving Precision of the Subspace Information Criterion

Evaluating the generalization performance of learning machines without using additional test samples is one of the most important issues in the machine learning community. The subspace information criterion (SIC) is one of the methods for this purpose, which is shown to be an unbiased estimator of the generalization error with finite samples. Although the mean of SIC agrees with the true genera...

متن کامل

Echo cancellation by global optimization of Kautz filters using an information theoretic criterion

In practical settings, the echo cancellation problem generally requires the adaptation of an IIR filter using some optimality criterion. This brings two problems: direct adaptation of numerator and denominator polynomial coefficients of IIR filters might result in unstable systems and/or the optimization might result in a suboptimal local minimum of the criterion. These two issues are addressed...

متن کامل

Optimal incorporation of sparsity information by weighted ℓ1 optimization

Compressed sensing of sparse sources can be improved by incorporating prior knowledge of the source. In this paper we demonstrate a method for optimal selection of weights in weighted l1 norm minimization for a noiseless reconstruction model, and show the improvements in compression that can be achieved.

متن کامل

Sparse Regression Modelling Using an Incremental Weighted Optimization Method Based on Boosting with Correlation Criterion

ABSTRACT A novel technique is presented to construct sparse Gaussian regression models. Unlike most kernel regression modelling methods, which restrict kernel means to the training input data and use a fixed common variance for all the regressors, the proposed technique can tune the mean vector and diagonal covariance matrix of individual Gaussian regressor to best fit the training data based o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2010

ISSN: 0377-0427

DOI: 10.1016/j.cam.2009.11.016